Communications to the Editor

1-EPIDACTIMICIN, A NEW AMINOGLYCOSIDE ANTIBIOTIC CONVERTED FROM FORTIMICIN B BY A BLOCKED MUTANT OF ISTAMYCIN-PRODUCING STREPTOMYCES TENJIMARIENSIS

Sir:

In our previous paper¹⁾, we showed similarities in antibiotic biosynthesis and antibiotic resistance between *Streptomyces tenjimariensis* and *Micromonospora olivasterospora* that produce istamycins (IS's) and fortimicins (FT's), respectively. It was demonstrated that these organisms were capable of converting biosynthetic intermediates derived from each other to antibiotic substances including a new one. In this paper, we report the structure determination and some physicochemical properties of the new antibiotic (named 1-epidactimicin; EDC) isolated from the FT-B supplemented cultured broth of *S. tenjimariensis*. Antimicrobial activity of the novel anti-

Table 1. ¹³ C NMR chemical shifts of da	actimicins.
--	-------------

Carbon	DC sulfate ^a	EDC sulfate ^a
C-1	52.3	49.1
C-2	72.1	65.4
C-3	76.7	74.0
C-4	54.9	51.5
C-5	69.6	67.4
C-6	72.8	73.7
3-OCH ₃	56.3	56.4
$4-NCH_3$	32.0	31.7
C-1′	95.1	92.0
C-2′	49.2	49.2
C-3′	21.8	21.1
C-4′	26.2	26.0
C-5′	70.4	70.7
C-6′	51.4	51.3
6'-CH3	15.0	15.0
C-1″	166.8	169.0
C-2''	44.6	44.0
CH-NH	155.6	155.6

Spectra were taken in D_2O .

^a Dactimicin (DC) sulfate and 1-epidactimicin (EDC) sulfate correspond to substances III and IV, respectively. ¹³C assignment was based on ¹H-¹³C correlation spectroscopy.

biotic is also provided.

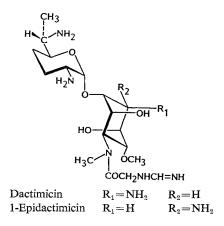

Antibiotics accumulated by S. tenjimariensis U41, a blocked mutant of IS-biosynthesis incubated in a fermentation medium (100 ml) supplemented with 200 μ g/ml of FT-B¹) were isolated as follows. The filtrate of the cultured broth (adjusted to pH 2 with H₂SO₄) was neutralized (up to pH 6) with NaOH and loaded on a column (95 ml) of Amberlite IRC-50 (Na⁺ - H^+ , 7:3). Antibiotics adsorbed on the column were eluted with $0.5 \text{ N} \text{ H}_2 \text{SO}_4$. The active fractions thus eluted were added with sodium ptoluenesulfonate (3 g) as an organic counter ion, adjusted to pH 5.0 with NaOH and then passed through a Diaion CHP-20P column (75 ml). The adsorbed antibiotics were eluted with a linear gradient $(0 \sim 8\%)$ of MeOH containing 0.01 mM HCl. Four peak fractions (I, II, III and IV) were visualized by HPLC monitoring¹⁾ of the eluates. Subsequently, the two peak fractions (III and IV) with antibiotic activity were purified. The fractions were concentrated to remove MeOH, neutralized with Amberlite IRA-45 and then chromatographed on an Amberlite IRC-50 (Na⁺ - H⁺, 7:3) column (3 ml). The

Table 2. 400 MHz ¹H NMR parameters for 1-epidactimicin sulfate (IV).

Chemical shifts (ppm)	Coupling constants (Hz)
5.46 (d, 1H)	$J_{1',2'}=3.3$
3.60 (m, 1H)	
2.03~2.15 (m, 3H)	
1.60 (m, 1H)	
3.88 (m, 1H)	
3.41 (m, 3H)	$J_{6',CH_3} = 6.7,$
	$J_{5',6'} = 6.7$
1.35 (d, 1H)	$J_{\rm CH_{S},6'} = 6.7$
4.38 (d, 1H),	$J_{2'',2''} = 18.0$
4.48 (d, 1H)	
7.98 (s, 1H)	
3.93 (t, 1H)	$J_{1,2}=3.6, J_{1,6}=3.6$
4.70 (t, 1H)	
4.06 (dd, 1H)	$J_{2,3}=3.3, J_{3,4}=12.0$
4.66 (dd, 1H)	
4.42 (t, 1H)	$J_{4,5} = J_{5,6} = 3.0$
4.23 (t, 1H)	
3.51 (s, 3H)	
3.16 (s, 3H)	
	(ppm) 5.46 (d, 1H) 3.60 (m, 1H) 2.03~2.15 (m, 3H) 1.60 (m, 1H) 3.88 (m, 1H) 3.88 (m, 1H) 3.41 (m, 3H) 1.35 (d, 1H) 4.38 (d, 1H), 4.48 (d, 1H), 4.48 (d, 1H) 7.98 (s, 1H) 3.93 (t, 1H) 4.70 (t, 1H) 4.06 (dd, 1H) 4.66 (dd, 1H) 4.42 (t, 1H) 4.23 (t, 1H) 3.51 (s, 3H)

antibiotics were eluted with $0.5 \text{ N} \text{ H}_2\text{SO}_4$, neutralized (up to pH 6.0) with NaOH and loaded on a carbon column (25 ml) using charcoal

Fig. 1. Structure of 1-epidactimicin.

(Wako Pure Chemical Industries, Ltd., Japan). The antibiotics adsorbed were then eluted with 80% MeOH containing $0.05 \text{ N} \text{ H}_2\text{SO}_4$. The resultant active fractions were evaporated to remove MeOH, adjusted to pH 5.0 with Amberlite IRA-45 (OH⁻), concentrated to 1 ml *in vacuo* and passed through a column (25 ml) of Amberlite IRA-400 (SO²⁻). The antibiotics were eluted with water, concentrated and lyophilized. These procedures gave pure antibiotic substances, III and IV, as their sulfates.

For structure determination, the ¹³C and ¹H NMR spectra were recorded on a Jeol JNM-GX400 spectrometer. Table 1 shows the ¹³C chemical shifts of **III** and **IV**. Both substances exhibited the identical chemical shifts to each other except for chemical shifts of C-1 and C-2. Differences in chemical shifts of C-1 and C-2 could be regarded as reflecting the conforma-

Table 3.	Antimicrobial spec	etra of dactimicin	(DC) a	and 1-enidactimicin	(EDC).

Oursenieut	MIC (µg/ml)		MIC (µg/ml)	
Organism	DC	EDC	Organism	DC	EDC
Staphylococcus aureus FDA 209P	3.13	3.13	Klebsiella pneumoniae PCI 602	3.12	3.12
S. aureus Smith	0.78	0.78	K. pneumoniae 22 No. 3038	6.25	6.25
S. aureus Ap01	3.12	3.12	Shigella dysenteriae JS11910	6.25	6.25
S. epidermidis 109	1.56	1.56	S. flexneri 4b JS11811	6.25	6.25
Micrococcus flavus FDA 16	1.56	3.12	S. sonnei JS11746	3.12	3.12
M. luteus PCI 1001	0.78	0.78	Salmonella enteritidis 1891	6.25	6.25
Bacillus subtilis PCI 219	0.78	0.78	S. typhi T-63	0.78	1.56
B. subtilis NRRL B-558	1.56	1.56	Proteus vulgaris OX19	0.78	1.56
B. cereus ATCC 10702	12.5	6.25	P. rettgeri GN311	1.56	1.56
B. anthracis	1.56	1.56	P. rettgeri GN466	1.56	1.56
Corynebacterium bovis 1810	1.56	3.12	Serratia marcescens	3.12	6.25
Mycobacterium smegmatis	0.39	0.39	Serratia sp. SOU	100	100
ATCC 607			Serratia sp. 4	50	50
Escherichia coli NIHJ	0.78	1.56	Providencia sp. Pv16	1.56	3.12
E. coli K-12	1.56	1.56	Providencia sp. 2991	3.12	3.12
E. coli K-12 R5	3.12	3.12	Pseudomonas aeruginosa A3	1.56	3.12
<i>E. coli</i> K-12 R388	1.56	1.56	P. aeruginosa No. 12	50	50
E. coli K-12 J5R11-2	0.78	1.56	P. aeruginosa H9	25	50
E. coli K-12 ML 1629	1.56	3.12	P. aeruginosa H11	100	100
<i>E. coli</i> K-12 ML 1630	3.12	3.12	P. aeruginosa TI-13	25	25
<i>E. coli</i> K-12 ML 1410	3.12	3.12	P. aeruginosa GN315	50	50
E. coli K-12 ML 1410 R81	3.12	3.12	P. aeruginosa 99	>100	>100
<i>E. coli</i> K-12 LA290 R55	1.56	3.12	P. aeruginosa B-13	>100	>100
<i>E. coli</i> K-12 LA290 R56	1.56	1.56	P. aeruginosa 21-75	100	100
<i>E. coli</i> K-12 LA290 R64	1.56	3.12	P. aeruginosa PST1	50	100
<i>E. coli</i> W677	1.56	3.12	P. aeruginosa ROS134/PU21	>100	>100
<i>E. coli</i> JR66/W677	3.12	3.12	P. aeruginosa K-Ps102	50	50
E. coli C600 R135	50	50	P. maltophilia GN907	>100	>100
E. coli JR225	1.56	3.12	-		

tional difference of amino group at C-1 position. Since chemical shifts of III were totally identical with those of dactimicin (DC; 2"-Nformimidoyl-FT-A) reported²⁾, it was assigned as DC. Substance IV was thereby determined as EDC (a novel antibiotic; Fig. 1). The ¹H chemical shifts of EDC (Table 2) were homologous to those of DC. Thus, our postulation that EDC would be expected by incubating *S. tenjimariensis* with FT-B was demonstrated. Conversion rate of FT-B to 1-*epi*-FT-B, DC and EDC was estimated as low as 1%.

EDC sulfate is a white powder melting at 205°C or higher with decomposition. Its optical rotation, $[\alpha]_D^{21}$, was $+92^\circ$ (c 0.15, H₂O), while that of DC, $[\alpha]_D^{21}$, was $+114^\circ$ (c 0.2, H₂O). Elemental analysis gave the following: Calcd for C₁₈H₃₈N₆O₆·2H₂SO₄·H₂O: C 30.90, H 6.90, N 11.99. Found: C 30.78, H 7.01, N 12.00. Its molecular weight was determined as 432 from the result of secondary ion mass spectrum. Thus, the distinct difference in physico-chemical properties between DC and EDC were recognized in the ¹³C NMR spectrum (see Table 1) and the optical rotation. In a comparative study both EDC and DC exhibited an identical broad antimicrobial spectrum (Table 3).

Substances I and II were also purified and analyzed for physico-chemical properties. Their physico-chemical properties were totally consistent with those of FT-B and its epimer, 1*epi*-FT-B (data not shown).

Antibiotics accumulated by *M. olivasterospora* ATCC 21819 in a fermentation medium supplemented with IS-A₀ or $-B_0^{(1)}$ were also isolated. Antibiotics purified as converted products from IS-A₀ and $-B_0$ exhibited totally the same physicochemical properties as those of IS-A₃ and $-B_3^{(3,4)}$, respectively (data not shown). These results were also predictable on the basis of the biosynthetic pathway of FT's by *M. olivasterospora*^{1,5,6)}. Moto Morioka[†] Kunimoto Hotta^{††} Daishiro Ikeda Hiroshi Naganawa Masa Hamada Yoshiro Okami

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received November 16, 1988)

References

- HOTTA, K.; M. MORIOKA & Y. OKAMI: Biosynthetic similarity between *Streptomyces tenjimariensis* and *Micromonospora olivasterospora* which produce fortimicin-group antibiotics. J. Antibiotics 42: 745~751, 1989
- 2) OHBA, K.; T. TSURUOKA, K. MIZUTANI, N. KATO, S. OMOTO, N. EZAKI, S. INOUYE, T. NIIDA & K. WATANABE: Studies on a new aminoglycoside antibiotic, dactimicin. II. Isolation, structure and chemical degradation. J. Antibiotics 34: 1090~1100, 1981
- 3) KONDO, S.; Y. HORIUCHI, D. IKEDA, S. GOMI, K. HOTTA, Y. OKAMI & H. UMEZAWA: 2"-N-Formimidoylistamycin A and B produced by Streptomyces tenjimariensis. J. Antibiotics 35: 1104~1106, 1982
- HORIUCHI, Y.; D. IKEDA, S. GOMI, S. KONDO & H. UMEZAWA: Isolation and synthesis of 2"-N-formimidoylistamycin A and B, new istamycin components. Carbohydr. Res. 109: 25~ 31, 1982
- 5) ITOH, S.; Y. ODAKURA, H. KASE, S. SATOH, K. TAKAHASHI, T. IIDA, K. SHIRAHATA & K. NAKA-YAMA: Biosynthesis of astromicin and related antibiotics. I. Biosynthetic studies by bioconversion experiments. J. Antibiotics 37: 1664~ 1669, 1984
- 6) ODAKURA, Y.; H. KASE, S. ITOH, S. SATOH, S. TAKASAWA, K. TAKAHASHI, K. SHIRAHATA & K. NAKAYAMA: Biosynthesis of astromicin and related antibiotics. II. Biosynthetic studies with blocked mutants of *Micromonospora olivasterospora*. J. Antibiotics 37: 1670~1680, 1984

[†] Present address: Central Research Laboratories, Yamanouchi Pharmaceutical Co., Ltd., 1-1-8 Azusawa, Itabashi-ku, Tokyo 174, Japan.

^{††} Present address: National Institute of Health, 2-10-35 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan.